Energy featured

Critical metals and the side effects of electrification

January 7, 2025

A review of Power Metal: The Race for the Resources That Will Shape The Future

“The energy transition from fossil fuels to renewables is a crucial part of the cure for climate change,” writes Vince Beiser on page one of his superb new book Power Metal. “But it’s a cure with brutal side effects.”

The point of Beiser’s stark warning is not to downplay the urgency of switching off fossil fuels, nor to assert that a renewable energy economy will be a greater ecological menace than our current industrial system.

Power Metal by Vince Beiser, published November 2024 by Riverhead Books.

But enthusiasm for supposedly clean and free solar and wind energy must be tempered by a realistic knowledge of the mining and refining needed to produce huge quantities of solar panels, wind turbines, transmission lines, electric motors, and batteries.

In Power Metal, Beiser explains why we would need drastic increases in mining of critical metals – including copper, nickel, cobalt, lithium, and the so-called “rare earths” – if we were to run anything like the current global economy solely on renewable electricity.

Beyond merely outlining the quantities of metals needed, however, he provides vivid glimpses of the mines and refineries where these essential materials are extracted and transformed into usable commodities. His journalistic treatment helps us understand the ecological impacts of these industries as well as the social and health impacts on the communities where this work is done, often in horrible conditions.

While cell phones and computers in all their billions each contain small quantities of many of the critical metals, the much-touted electric vehicle transition has a deeper hunger. Take nickel.

“Stainless steel consumes the lion’s share of nickel output,” Beiser writes, “but batteries are gaining fast.” (page 69)

“The battery in a typical Tesla,” he adds, “is as much as 80 percent nickel by weight. The battery industry’s consumption of nickel jumped 73 percent in 2021 alone.” (p 69)

And so on, down the list: “a typical EV contains as much as one hundred seventy-five pounds of copper.” ( p 45)

“Your smartphone probably contains about a quarter ounce of cobalt; electric vehicle batteries can contain upwards of twenty-four pounds.” (p 77)

Extending current trend lines leads to the following prediction:

“By 2050, the International Energy Agency estimates, demand for cobalt from electric vehicle makers alone will surge to nearly five times what it was in 2022; nickel demand will be ten times higher; and for lithium, fifteen times higher ….” (p 4)

If those trend lines hold true – and that’s a big “if” – the energy transition will come with high ecological costs.

The historic leading producer of nickel, Norilsk in Siberia, “is one of the most ecologically ravaged places on Earth.” (p 70) Unfortunately a recent contender in Indonesia, where the nickel ore is a lower quality, may be even worse:

“Nickel processing also devours huge amounts of energy, and most of Indonesia’s electricity is generated by coal-fired plants. That’s right: huge amounts of carbon-intensive coal are being burned to make carbon-neutral batteries.” (p 74)

The Bayan Obo district in China is the world’s major producer of refined rare earths – and

“not by coincidence, it is also one of the most polluted areas on the planet. …” (p 28)

Ideally we’d want the renewable energy supply chain to meet three criteria: cheap, clean, and fair. As it is, we’re lucky to get one out of three.

Mining of critical metals can only take place in particular locations – blessed or cursed? – where such elements are somewhat concentrated in the earth’s crust. When there is a choice of nations for suppliers, the global economy leans to nations with lax environmental and labour standards as well as low wages.

There are no geographic restrictions on processing, however, and that’s why China’s dominance in critical metal processing far exceeds its share of world reserves.

The Mountain Pass mine in California is rapidly expanding extraction of rare earths. But the US facility is only able to produce a commodity called bastnaesite, which contains all the rare earths mixed together. To separate the rare earth elements one from another, the mine operator tells Beiser, the bastnaesite must be shipped to China:

“There’s no processing facilities anywhere outside of China that can handle the scale we need to be producing.” (p 36)

The story is similar for other critical metals. Cobalt, for example, is mined in famously brutal conditions in the Democratic Republic of Congo, and then sent to China for processing.

Could both the mining and the processing be done in ways that respect the environment and respect the health and dignity of workers? Major improvements in these respects are no doubt possible – but will likely result in a significantly higher price for renewable energy technologies. Our ability to pay that price, in turn, will be greatly influenced by how parsimoniously or how profligately we use the resulting energy.

Collection of circuit boards at Agbogbloshie e-waste processing plant in Ghana. Image from Fairphone under Creative Commons license accessed via flickr.

Recycling to the rescue?

Is the messy extraction and processing of critical metals just a brief blip on a rosy horizon? Proponents of recycling sometimes make the case that the raw materials for a renewable energy economy will only need to be mined once, after which recycling will take over.

Beiser presents a less optimistic view. A complex global supply chain manufactures cars and computers that are composites of many materials, and these products are then distributed to every corner of the world. Separating out and re-concentrating the various commodities so they can be recycled also requires a complex supply chain – running in reverse.

“Most businesses that call themselves metal recyclers don’t actually turn old junk into new metal,” Beiser writes. “They are primarily collectors, aggregators.” (p 130)

He takes us into typical work days of metal collectors and aggregators in his hometown of Vancouver as well as in Lagos, Nigeria. In these and other locations, he says, the first levels of aggregation tend to be done by people working in the informal economy.

In Lagos, workers smash apart cell phones and computers, and manually sort the circuit boards into categories, before the bundles of parts are shipped off to China or Europe for the next stage of reverse manufacturing:

“Shredding or melting down a circuit board and separating out those tiny amounts of gold, copper, and everything else requires sophisticated and expensive equipment. There is not a single facility anywhere in Africa capable of performing this feat.” (p 145)

Because wages are low and environmental regulations lax in Nigeria and Ghana, it is economically possible to collect and aggregate almost all the e-waste components there. Meanwhile in the US and Europe,

“fewer than one in six dead mobile phones is recycled.” (p 146)

Cell phones are both tiny and complicated, but what about bigger items like solar panels, wind turbine blades, and EV batteries?

Here too the complications are daunting. It is currently far cheaper in the US to send an old solar panel to landfill than it is to recycle it. There isn’t yet a cost-effective way to separate the composite materials in wind turbine blades for re-use.

Lithium batteries add explosive danger to the complications of recycling:

“If they’re punctured, crushed, or overheated, lithium batteries can short-circuit and catch on fire or even explode. Battery fires can reach temperatures topping 1,000 degrees Fahrenheit [538°C], and they emit toxic gases. Worse, they can’t be extinguished by water or normal firefighting chemicals. (p 153)

Perhaps it’s not surprising that only 5% of lithium-ion batteries are currently recycled. (p 151)

Given the costs, dangers, and complex supply chain needed, Beiser says, recycling is not

“the best alternative to using virgin materials. In fact, it’s one of the worst.” (p 16)

Far better, he argues in the book’s closing section, are two other “Rs” – “reuse” and “reduce.”

Simply using all the cell phones in Europe for one extra year before junking them, he says, would avoid 2.1 million metric tons of carbon dioxide emissions per year –comparable to taking a million cars off the road.

Speaking of taking cars off the road, Beiser writes,

“the real issue isn’t how to get more metals into the global supply chain to build more cars, it’s how to get people to where they want to go with fewer cars.” (p 186)

Given the high demands for critical metals involved in auto manufacturing, Beiser concludes that

“the most effective single way that we as individuals can make a difference is this: Don’t buy a car. Not even an electric one.” (p 182)

He might have added: if you do buy a car, get one that’s no bigger or heavier than needed for your typical usage, instead of the ever bulkier cars the big automakers push.

In response to projections about how fast we would need to convert the current world economy to renewable energy, Beiser fears that it may not be possible to mine critical metals rapidly enough to stave off cataclysmic climate change. If we dramatically reduce our demands for energy from all sources, however, that challenge is not as daunting:

“The less we consume, the less energy we need. The less energy we use, the less metal we need to dig up …. Our future depends. in a literal sense, on metal. We need a lot of it to stave off climate change, the most dangerous threat of all. But the less of it we use, the better off we’ll all be.” (p 204-205)

“Energy transition” is a key phrase in Power Metal – but does this transition actually exist? Andreas Malm and Wim Carton make the important point that both “energy transition” and “stranded assets” remain mere future possibilities, each either a fond dream or a nightmare depending on one’s position within capitalist society. All the renewable energy installations to date have simply been additions to fossil energy, Malm and Carton point out, because fossil fuel use, a brief drop during the pandemic aside, has only continued to rise.

We turn to Malm and Carton’s thought-provoking new book Overshoot in our next installment.

Bart Hawkins Kreps

Bart Hawkins Kreps is a masters student in the Faculty of Environmental and Urban Change at York University, Toronto. A long-time bicycling advocate and free-lance writer, his views have been shaped by work on highway construction and farming in the US Midwest, nine years spent in the Canadian arctic, and twenty years of involvement in the publishing industry in Ontario. He blogs most often about energy, economics and ecology, at anoutsidechance.com.