Click on the headline (link) for the full text.
Many more articles are available through the Many more articles are available through the Energy Bulletin homepage.
New book “Spinning Our Wheels” from Community Solutions
Megan Bachman, Yellow Springs News
Electric cars may not be the answer to reducing our dependence on fossil fuels, says local author Pat Murphy in his recently-released book, Spinning Our Wheels.
Instead, Murphy proposes, we should share rides to increase transportation’s efficiency and reduce the number of total cars on the road.
“The popular way this has been promoted is to note the electric car doesn’t emit CO2,” Murphy said in a recent interview. “But [CO2] is emitted at a few thousand power plants in the U.S. with coal and natural gas the leading fuels in electricity production.”
Murphy challenges what he considers misleading statements by automobile companies and U.S. government officials in the book, published in July by his organization, local nonprofit Community Solutions.
“The claims made for these new products imply revolutionary breakthroughs that eliminate any need to actually reduce consumption,” Murphy writes in the book’s preface. “It allows the continuation of the dream of a car (or two or three) in every garage in every household in the world.”
In his book Murphy cites a growing number of technological challenges, including an insufficient global supply of the lithium used in electric vehicles’ batteries, the high cost of the vehicles, and short battery ranges of fewer than 100 miles.
Even if these problems were overcome, Murphy said, the electric car still only generates 15 to 20 percent less carbon dioxide than the internal combustion engine — nowhere near the 80 to 90 percent reduction required to forestall climate changes.
“We need to start reducing the number of power plants now,” Murphy said. “If we committed to the electric car, we will be committing to more power plants over the next 20 years.”
The 96-page book is available for free download from Community Solutions’ Web site, www.communitysolution.org, or in hard-copy format for $12.95 from the site or the office at 114 East Whiteman Street.
(2 September 2010)
The Community Solutions website link to the book is here. You can also download it in pdf format from that page. -KS
Bicycle Coalition shows off real pedal power pulling a pro-green two-wheeled move
Patrick May, San Jose Mercury News
The Silicon Valley Bicycle Coalition had to move their office this weekend from Willow Glen to The Alameda. Desks, chairs, sofas, paper shredder, the works.
Guess how they did it.
Yep.
In a pedal-pushing parade of pro-green propaganda, 30 bicycling volunteers and their cargo moved single-file through a sweet Saturday morning slice of San Jose, pulling the contents of an entire headquarters behind them on little trailers, turning heads while trying to change the world one two-wheeler at a time.
“People from our community do bike moves all the time when they’re moving to a new house,” said Corinne Winter, executive director of the 700-member advocacy group. “So we figured, why not move our office that way, too?”
Engineers and lawyers, moms and dads, little kids along for the ride, the volunteers gathered Saturday at 9:30 a.m. at the old office, which was actually Winter’s small house in Willow Glen. They carefully divided the equipment and boxes among themselves, tied down the furniture, then mounted for the three-mile zig-zag across town.
Design engineer and coalition board member Greg McPheeters, 32, strapped a huge couch onto a tiny but sturdy trailer attached to his bike. “The couch is easy,” he said. “It’s one big thing. And big things are easy to move by bike. It’s the small things that are hard.”
(4 September 2010)
Transportation Kinetics
Hans Noeldner, Entropic Journal
The laws of kinetic energy for a hot gas beautifully describe our default behaviors in the complex network of interconnected “pressure vessels” we call our transportation corridors. Small things that move slowly get whacked by big things that move fast. Either the meek learn to get the hell out of the way; or they get with the program, bulk up, and shift into high gear.
It’s really not much more complicated than that. Not unless significant numbers of “molecules” choose to behave as though they are responsible for the impacts of their momentum on other molecules. And if that happens – Whoa! The changes which occur could begin to seem…well, intentional. As though something like intelligence might be at work. We might even see some respect for the little guy. But more on that later.
First, why do so many molecules want to go somewhere else so often in the first place? Why aren’t they happy being where they already are? And why are so many of the places where they want to go located so far apart? Why isn’t “a” next-door to “b” more often?
Well, that’s easy! The more kinetic energy you pump into the system, the further apart things get pushed!! (Duh.) In fact our transportation network here in the USA is a fantastic system for continuously manufacturing “needs” for more – and bigger – and longer – high-pressure pipes. Which, in turn, continuously manufactures “needs” for more energy, more machinery, more development, and more land. It’s quite the positive-feedback loop: great for investors, businesses, units of government, and employment. Tax revenues grow; the DOT and other bureaucracies swell; and politicians buy votes with the pork they deliver to the Highway Lobby. Meanwhile society can avoid balancing current expenditures with current income. You could base a whole damned economy on it. For a while, anyway.
Back to my point. For various reasons, lots of people think there are serious problems with transportation. So let’s consider some of the “solutions” that are being proposed.
(1) The overwhelming majority seem to think the way to solve the problem is to expand the high-pressure pipe network. Well, “think” isn’t really the right word; it’s their default behavior that does the thinking…and the voting. That’s why their default solution is mostly about accommodating more and more big, fast molecules. True, many people SAY they want the small and the slow to have a fair shake, but they don’t really mean it. Momentum speaks louder than words.
(2) Some people – a distinct minority – believe that if enough low-pressure pipes are added to the network, most of the molecules will have a choice as to which pipes they use: high-pressure pipes if they want to be big and fast, or low-pressure pipes if they want to be small and slow.
It’s a nice idea, but there are serious problems with it. Maybe even insurmountable ones, especially if we are at all serious about the “most” having a “choice”. Why? The existing network consists primarily of high-pressure pipes. Even if we focus on areas where molecules tend to congregate, most are places which are richly interconnected with high-pressure pipes but poorly connected with low-pressure ones. Installing new low-pressure pipes parallel to so many existing high-pressure pipes would cost a fortune. Maybe even an empire.
So who would pay for it? If you consider where the big, fast molecules REALLY like to live (exurbia), you will find damn few low-pressure pipes. Why? Avoiding the costs of low-pressure pipes is one big reason why so many big, fast molecules move there! Not only that, but most of these upwardly-mobile molecules spend most of their time “off the reservation”, congesting high-pressure pipes in places where they don’t BEGIN to pay their fair share. The system is already bankrupt, running on IOUs from children who can’t even vote yet.
Then there is the matter of proximity. Fast molecules couldn’t care less about destination “a” being close to “b” – ten or twenty miles seem mighty short when you’re really truckin’ down a high-pressure pipe. But pity the slow molecules! Even if there is a low-pressure pipe running parallel to a high-pressure one (so the slow guys don’t run the risk getting whacked), the TIME it takes can be a killer. Moving slow, it feels like darn near everything is just too far away.
Last, we must not forget that all parallel pipes eventually have to intersect. And it’s a tough engineering challenge to build these intersections so that the small, slow molecules can safely cross the high-pressure pipes. Especially when you have big, fast molecules who don’t much like being restrained. You know, high momentum dudes who behave as though having to wait for slowpokes is…well…an insult! “Move over, a**hole!!” “Get the f**k out of my road!”
(3) A few people have their fingers crossed that the energy supply for the high-momentum molecules will eventually dwindle; the pressure will go down in the high-pressure pipes; and somehow the system will become more “humane” for small, slow guys. Maybe they are right. Probably they are right. It might take a while, though. And it’s sort of weird, expecting pipes to get “humane”. Like “pipes” caused the problem in the first place! Meanwhile, it’s obvious that the energy supply for the big and fast hasn’t run out yet. So many of the folks who are waiting for the dwindling conclude the best they can do right now is to buckle up themselves and their kids inside a big-ish molecule too. OK, one that’s not-so-big…but not-so-small, either! Then if they get whacked by a really big, fast molecule, it won’t be a guaranteed death sentence.
(4..?) Might there be another possibility – one which doesn’t require huge numbers of additional pipes…or…having to run out of energy? Like, what would happen if millions of molecules…just…began to choose to have less momentum more often? Hmm…maybe when we brush our teeth tonight, we could look in the mirror for clues about how to make it happen.
(23 August 2010)