Ecological civilization

January 12, 2011

NOTE: Images in this archived article have been removed.

Excerpts are posted with permission. The complete article is available online.
-BA

Given the overwhelming harm being done to the world’s environment and to its people, it is essential today to consider how we might organize a truly ecological civilization—one that exists in harmony with natural systems—instead of trying to overwhelm and dominate nature. …

There are numerous ways to approach and think about the enormous harm that has been done to the environment. I will discuss the following:

  1. the critical characteristics that underlie strong ecosystems;

  2. why societies are not adequately implementing ecological approaches; and
  3. how we might use characteristics of strong natural ecosystems as a framework to consider a future ecological civilization.

I. Ecological Principles: Learning from Nature

… much has been learned about how natural systems operate, about the importance of the interactions of organisms among themselves and with their physical/chemical/climatic environment. There are fragile natural ecosystems that are easily disturbed, and may become degraded as a result of slight disturbance. However, many natural ecosystems are strong, able to resist significant perturbation and/or quickly return to normal functioning following a disturbance. Natural disturbances of an ecosystem may be sudden—a wildfire started by a lightening strike, huge winds generated by hurricanes, floods, etc.—or gradual, as with changes in long-term precipitation trends. More resilient systems are better able to adapt to long-term gradual changes as well as sudden ones. …

Metabolism and Metabolic Connections

The term metabolism is usually used in reference to the work done inside an organism or a cell as it goes about its normal operations: the building up of new organic chemicals and the breaking down of others, the recovering of energy from some compounds, and the use of energy to do work. But a critical part of the metabolism of a cell or large organism is the exchange of materials with the environment and other organisms: obtaining energy-rich organic molecules and individual elements necessary to make all the stuff of life, including oxygen, carbon dioxide, nutrients (such as nitrogen, phosphorus, potassium, and calcium), and water. Without access to these resources outside itself, an organism would run out of energy and die.

… metabolism involves not only processes internal to the organism but also a continual exchange of materials between an organism and its immediate environment—the soil, air, water, and other organisms. (See Figure 1.)

Image Removed
Figure 1. Soil-plant-animal-atmosphere metabolic interactions

Almost all organisms use the energy derived from sunlight—either producing it themselves by photosynthesis or feeding on plant material or organisms that have themselves fed on plant material. However, organisms, from the “simplest” bacteria to mammals, interact with one another and with the chemical and physical aspects of their local environment. The waste of one cell—or the whole organism itself—becomes food for another. …

Soil is not just a medium for supporting plants so they can grow upright. It is also composed of minerals, gases (atmosphere), water, decomposing organic material, and literally millions of organisms such as fungi, bacteria, nematodes, earthworms, and so on, all continually interacting and providing resources to one another. There is a strong metabolic interaction between plants and soil. Plants, as they grow, provide food for many soil organisms, as material produced by photosynthesis in green tissue is translocated to the roots and exuded

Strong Natural Ecosystems

… A number of characteristics can be thought of as pillars supporting strong natural ecosystems. These have been described as follows:

  • Diversity …

  • Efficient Natural Cycles through Closely Linked Metabolic Relationships …
  • Self-Sufficiency. …
  • Self-Regulation. …
  • Resiliency through Self-Renewal. …

II. Why Are Societies Not Applying Ecological Knowledge?

… Although the science of ecology was born in the nineteenth century, it developed only gradually over the years. During this process, our understanding about the functioning of natural systems and the interaction of organisms with the environment has deepened. How can we reconcile this growing knowledge with the accelerating pace of environmental destruction? The answer is that nearly the entire world is now part of a global capitalist system, which is, at its heart, an anti-environmental economic/social system. Having accumulation of capital without end as its motivating force and only goal, capitalism creates environmental havoc locally, regionally, and globally.

… The accumulation of capital, the driving and motivating force of capitalism, leads naturally to many consequences that harm the environment. The system proceeds assuming—contrary to all evidence—unlimited resources (including cheap energy) and unlimited natural “sinks” for wastes generated.

Human activity breaks or greatly alters the metabolic connections discussed above and tends to impoverish and weaken the ecosystem, making it function less effectively and with less resilience. Although human-induced metabolic disturbances and rifts occurred in the precapitalist era—for example, the cutting down of forests in the Mediterranean region thousands of years ago led to accelerated runoff of rainfall, soil erosion, and the drying of springs in the dry season—the logic of capitalism and the technology it developed, along with the increased number of people on Earth, led to much greater and more intensive disruptions in the natural cycling of matter, affecting not only local and regional ecologies, but global ones as well. …

Rifts in Nutrient Cycles

A number of nineteenth-century observers were concerned with an aspect of capitalism that is still a problem today …

Until the discovery of phosphate deposits and the practice of making the phosphorus in them more available to plants, one of the sources of phosphorus for European agriculture became the bones of former soldiers—which were harvested from the Napoleonic battlefields and burial grounds. The quest for nutrients to replenish soils in the later part of the nineteenth century led to “guano imperialism,” as countries competed to capture islands rich in this natural fertilizer.9 Peru had the world’s richest guano deposits and was the center of the international guano trade.

Imported Chinese laborers (“coolies”) worked on the guano islands, extracting this valuable fertilizer for export to the global North. Undernourished, physically beaten, choking on dust, they labored as beasts of burden under conditions, as noted by Marx, “worse than slavery.”10 Today huge quantities of nitrogen fertilizer are produced by the Haber-Bosch process, while large amounts of potash and phosphorus minerals are mined and treated. The use of increasing amounts of energy (especially for nitrogen production) by the Haber-Bosch process, as well as by mining and processing of phosphorus, causes great ecological disturbance and pollution.

The metabolic rift of people removed from land that produces their food continues unabated with the transfer of large populations from rural areas to cities. This phenomenon that began in earnest with the British land foreclosures that forced peasants off the land between the fifteenth and nineteenth centuries continues today with modern foreclosures, as farmers in Latin America, Africa, and Asia are forced off the land and migrate to cities that hold few jobs for them. Most enter the “informal economy” and struggle for existence.11 …

Rifts in the Circulation of Organic Matter and the Carbon Cycle

Disruption of the Hydrologic (Water) Cycle

Numerous practices of capitalist development—such as concentrating people in large cities, raising animals on factory farms, over-pumping water from aquifers for irrigation, clearcutting of forests, and mountaintop removal for coal mining—have caused a significant alteration in the hydrologic cycle in ways that have degraded local and regional ecosystems. …

Rifts in the Interactions among Organisms

Interventions to Try to Bridge Metabolic Rifts—Or Transfer the Problems Elsewhere

The Complexity of Ecological Disruptions

… The need to use so much fertilizer results from losses of nutrients in runoff, the leaching and volatilization in inefficiently designed systems, and separation of people and animals from the land that produces their food. One consequence of continuous loss of nutrients from soil is the need to import fertilizers on crop farms, with severe environmental cost in terms of mining disruption and energy use. Production of nitrogen fertilizer is especially energy intensive. Approximately 1,200 m3 of natural gas is needed to produce one metric ton of anhydrous ammonia fertilizer (equivalent to about 1,700 kg of N).15 Approximately one third of the energy used to grow a crop of corn in the U.S. Midwest is used to produce, ship, and apply nitrogen fertilizer. And every ton of phosphorus as fertilizer, after acid has been added to the rock to make it more soluble, results in five tons of waste, which contains radioactive substances and leaches highly acidic water. In addition, the world may be close to “peak phosphorus” extraction, after which phosphorus will be more expensive and difficult to obtain. The lack, or prohibitively high cost, of phosphorus fertilizers may turn out to be one of the largest disruptions in the world’s agriculture. …

The Wider Metabolic Rifts Engendered by Industrial Production/Consumption

… industrial mining and refining of raw materials and production of commodities, with profit as the sole aim, result in significant environmental problems, such as:

  1. numerous toxic chemicals are used (polluting human bodies and the rest of the ecosystem);
  2. carbon dioxide and other pollutants are emitted by power plants and oil refineries;
  3. nonrenewable resources are depleted and renewable resources are undermined and even depleted;
  4. the land itself is destroyed in such ventures as “mountaintop removal” in the mining of coal;
  5. the massive production of unneeded commodities for a small minority of the world’s population (and persuading them to buy them), while not meeting the basic needs for a larger portion of humanity.

III. Creating an Ecological Civilization

Capitalism is incompatible with a truly ecological civilization because it is a system that must continually expand, promoting consumption beyond human needs, while ignoring the limits of nonrenewable resources (the tap) and the earth’s waste assimilation capacity (the sink).

… Although it is impossible to know what future civilizations will be like, we can at least outline characteristics of a just and ecologically based society. As a system changes, it is the history of the country and the process of the struggle that bring about a new reality. However, in order to be ecologically sound, a civilization must develop a new culture and ideology based on fundamental principles such as substantive equality. It must

  1. provide a decent human existence for everyone: food, clean water, sanitation, health care, housing, clothing, education, and cultural and recreational possibilities;
  2. eliminate the domination or control of humans by others;
  3. develop worker and community control of factories, farms, and other workplaces;
  4. promote easy recall of elected personnel; and
  5. re-create the unity between humans and natural systems in all aspects of life, including agriculture, industry, transportation, and living conditions.

An ecological society is one that will need to be the opposite of capitalism in essentially all aspects. It would:

  1. stop growing when basic human needs are satisfied;
  2. not entice people to consume more and more;
  3. protect natural life support systems and respect the limits to natural resources, taking into account needs of future generations;
  4. make decisions based on long-term societal/ecological needs, while not neglecting short-term needs of people;
  5. run as much as possible on current (including recent past) energy instead of fossil fuels;
  6. foster the human characteristics and a culture of cooperation, sharing, reciprocity, and responsibility to neighbors and community;
  7. make possible the full development of human potential; and
  8. promote truly democratic political and economic decision making for local, regional, and multiregional needs.

Self-Regulation

Decisions are made—to as great an extent as possible—at the level where the effects will be most felt. Self-regulation in this sense is democratic self-governing and needs to occur at the workplace, community, multi-community, regional, and multiregional levels, so that major political and economic decisions are in the hands of an empowered populace. A system of economic and political democracy provides better identification of, and solutions to, problems. …

Diversity

Efficient Natural Cycles through Closely Linked Metabolic Relationships

The concept of capitalist efficiency—simplification of production processes, producing with the least amount of (and most unskilled) labor possible, lowering labor and other costs to reap maximum profits, using less gasoline to travel more miles in your car—will be replaced by ecological concepts of metabolic efficiency in the cycling of materials and energy that permit the sustainability of the civilization. These rely on synergies that develop among people living in cooperation with each other (instead of in competition and individualist isolation) and with nature (instead of attempting to overwhelm and dominate it). Social metabolism, or human interactions with each other, is analogous to the metabolic interactions among nonhuman organisms (microorganisms, plants, insects, other animals) in natural systems. Working fewer hours—if everyone participates to produce life’s needs—means that people will have more time to spend with family and community. And stronger communities are developed when individualism, consumerism, and competition are replaced with cooperative ties among people, as the communities develop procedures and systems for meeting the basic physical, cultural, and recreational needs for everyone.

… People will, to as great an extent as possible, live near where they work, use public mass transit, and eat food produced in reasonable proximity to their homes. People will work fewer hours, because, with all unnecessary jobs (for example in advertizing and other parts of the sales effort, and much of finance, real estate, and insurance) eliminated, it will not take that much work to produce the basic needs of society. But everyone who can work will have a job.

An ecological civilization cannot be based on private automobiles as the main, or even a significant, transportation system. No matter how fuel efficient cars and trucks become, the use of buses and trains for the main regional transportation systems will be more energy efficient. A less car-dependent society will use up fewer materials, cause less disturbance, and use less land for road construction and all the businesses connected to an automobile culture (such as McDonald’s drive through restaurants). Luxury commodities will not be produced, and products will not come in the elaborate packaging now used, which overwhelms the earth’s landfills. People will live in homes designed to be attractive and comfortable but also to be energy efficient and to take advantage of natural heating/cooling possibilities. …

Self-Sufficiency

Complete self-sufficiency is neither possible nor desirable for all regions and all communities. However, self-sufficiency with regard to many needs, such as food, water, housing, and energy should be a goal toward which communities and regions strive. In this way, most of the knowledge and skills needed for providing the basics reside within the local community or group of neighboring communities. …

Resiliency through Self-Renewal

The degree of resiliency and self-renewal depends on how well all the traits discussed above have been developed and incorporated into society. Community and regional social structures and economies that can better withstand adverse events and recover quickly will be more sustainable. The characteristics, or pillars, discussed above—self-regulation, self-sufficiency, diversity, and efficiency through closely linked metabolic relationships—all contribute to creating a resilient society. Community and regional structures and economies based on these characteristics should be able to withstand adverse events and recover more quickly through a process of self-renewal. Global cultural interchange and cooperation (made more viable because it will be between mutually self-determining communities that are not in competition with each other) also enhance resiliency.

It is inconceivable that capitalism itself will lead directly to an ecological civilization that provides the basic needs for all people. However, building an ecological civilization that is socially just will not automatically happen in post-capitalist societies. It will occur only through the concerted action and constant vigilance of an engaged population.

Fred Magdoff (fmagdoff [at] uvm.edu) is professor emeritus of plant and soil science at the University of Vermont and adjunct professor of crop and soil science at Cornell University. His most recent book is Agriculture and Food in Crisis (co-edited with Brian Tokar, Monthly Review Press, 2010). This article is slightly revised from his presentation to the Marxism and Ecological Civilization Conference at Fudan University, Shanghai, November 17, 2010.


Tags: Activism, Culture & Behavior, Energy Policy, Politics