First, you should know that I have an allergy to anything that smacks of geoengineering. And the use of biochar–charred organic matter that can improve soil fertility–to address climate change by interring carbon in farmland on a mass scale strikes me as one of the largest geoengineering projects ever conceived. I always ask, “What will the unintended consequences be? Can we be sure that those consequences won’t simply present a new set of problems, possibly catastrophic ones?”
Fortunately, Albert Bates, author of The Biochar Solution, takes these questions seriously and offers a measured endorsement of biochar as one of an array of strategies for responding to climate change. Even in the forward Vandana Shiva warns that “[b]y shifting our concern from growing the green mantle of the earth to making charcoal, biochar solutions risk repeating the mistakes of industrial agriculture.”
With this kind of qualified endorsement, why should we read further? The answer is straightforward: Because intelligently and broadly applied and ethically managed, the production of biochar and its incorporation in the soil has the potential to lower carbon dioxide levels in the atmosphere, not on a millennial time line, but within a few decades. We have the possibility of reversing climate change. It’s worth exploring this possibility because some of the most prominent climate scientists in the world believe we have already passed beyond the level of greenhouse gases in the atmosphere that will, if not reduced, move the world into new and much warmer climate.
So, what might one of those unintended and possibly catastrophic consequences be? Bates summarizes an unexpected answer from a prominent soil scientist as follows:
Biochar is too powerful, she told me. Once the industrial complex with its credit markets, government incentives, and subsidies to farmers gets up and running, biochar could become a juggernaut, pushing the soil-atmosphere carbon balance into an overcorrection and ushering in a rapid-onset ice age.
When was the last time you heard someone who is firmly convinced that climate change is a critical issue say that a proposed solution would not simply fail, but could push us into an ice age? If biochar was that potent, I wanted to know more.
And, this leads to a second reason why you should read The Biochar Solution. The book begins with the engaging story of how biochar was discovered but not really understood (by Europeans, that is), forgotten, rediscovered, and finally understood by scientists. The story reads like a combined action/adventure tale and detective novel and shows Bates to be an accomplished storyteller. We are treated to a trip down the Amazon at the time of the conquistadors; to visits to plantations run by expatriate Confederate plantation owners who emigrated to Brazil after The Civil War; and finally to the findings of modern archeologists who uncover the truth about seemingly fantastical historical descriptions of great cities on the Amazon at the dawn of Spanish settlement in the New World.
The remainder of book is something of a handbook on biochar and carbon farming, showing how it might be done and who might do it. Bates introduces us to innovators who think broadly and creatively about how the soil might again become the rich, dense, living provider of fertility it once was. Readers will learn that the side effects may actually turn out to be side benefits: revitalized soils, verdant cities, higher long-term agricultural productivity, increased biodiversity and the reclaiming of desert landscapes. The author also discusses the prospects for agroforestry, an approach to forests that could make them both sustainable and productive for human purposes.
Along the way Bates relates several astounding claims that will keep you reading. Two such claims are as follows: 1) The Amazon rainforest is actually the product of human actions, and 2) the world’s cooking stoves–the kind that burn wood and other biomass in most poor countries and currently add to global climate change woes–could be transformed into tools for climate recovery.
Could little pieces of charred organic matter really do all that Bates suggests? He recommends that we give biochar a widespread trial, but in conjunction with deep cuts in greenhouse gas emissions. These cuts, he says, are absolutely essential.
While such cuts seem by far the more difficult task, biochar will involve its own difficulties. First, as Bates admits, the production of biochar will have to be regulated to ensure that it is done ethically and sustainably. He gives an example in the book of unregulated production and its potential to do much harm. But, in a world now gripped by the laissez-faire model of economics, it’s hard to see how broad-reaching international regulation of biochar production could be achieved.
And yet, if the unfolding climate catastrophe produces a vivid and pivotal moment–say, a sudden collapse of the West Antarctic Ice Sheet–the will to do something as dramatic as seeding a large portion of the Earth’s soils with biochar and doing it in an ethical way may actually become politically feasible.